Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 947, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351211

RESUMO

Declining Arctic sea ice is increasing polar bear land use. Polar bears on land are thought to minimize activity to conserve energy. Here, we measure the daily energy expenditure (DEE), diet, behavior, movement, and body composition changes of 20 different polar bears on land over 19-23 days from August to September (2019-2022) in Manitoba, Canada. Polar bears on land exhibited a 5.2-fold range in DEE and 19-fold range in activity, from hibernation-like DEEs to levels approaching active bears on the sea ice, including three individuals that made energetically demanding swims totaling 54-175 km. Bears consumed berries, vegetation, birds, bones, antlers, seal, and beluga. Beyond compensating for elevated DEE, there was little benefit from terrestrial foraging toward prolonging the predicted time to starvation, as 19 of 20 bears lost mass (0.4-1.7 kg•day-1). Although polar bears on land exhibit remarkable behavioral plasticity, our findings reinforce the risk of starvation, particularly in subadults, with forecasted increases in the onshore period.


Assuntos
Inanição , Ursidae , Humanos , Animais , Mudança Climática , Canadá , Dieta , Camada de Gelo , Regiões Árticas , Ecossistema
2.
Sci Rep ; 14(1): 4751, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413768

RESUMO

The diets of the eight species of ursids range from carnivory (e.g., polar bears, Ursus maritimus) to insectivory (e.g., sloth bears, Melursus ursinus), omnivory (e.g., brown bears, U. arctos), and herbivory (e.g., giant pandas, Ailuropoda melanoleuca). Dietary energy availability ranges from the high-fat, highly digestible, calorically dense diet of polar bears (~ 6.4 kcal digestible energy/g fresh weight) to the high-fiber, poorly digestible, calorically restricted diet (~ 0.7) of giant pandas. Thus, ursids provide the opportunity to examine the extent to which dietary energy drives evolution of energy metabolism in a closely related group of animals. We measured the daily energy expenditure (DEE) of captive brown bears in a relatively large, zoo-type enclosure and compared those values to previously published results on captive brown bears, captive and free-ranging polar bears, and captive and free-ranging giant pandas. We found that all three species have similar mass-specific DEE when travel distances and energy intake are normalized even though their diets differ dramatically and phylogenetic lineages are separated by millions of years. For giant pandas, the ability to engage in low-cost stationary foraging relative to more wide-ranging bears likely provided the necessary energy savings to become bamboo specialists without greatly altering their metabolic rate.


Assuntos
Ursidae , Animais , Filogenia , Ingestão de Energia , Herbivoria , Dieta Hiperlipídica
3.
J Comp Physiol B ; 193(6): 699-713, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37819371

RESUMO

Hibernation is a highly seasonal physiological adaptation that allows brown bears (Ursus arctos) to survive extended periods of low food availability. Similarly, daily or circadian rhythms conserve energy by coordinating body processes to optimally match the environmental light/dark cycle. Brown bears express circadian rhythms in vivo and their cells do in vitro throughout the year, suggesting that these rhythms may play important roles during periods of negative energy balance. Here, we use time-series analysis of RNA sequencing data and timed measurements of ATP production in adipose-derived fibroblasts from active and hibernation seasons under two temperature conditions to confirm that rhythmicity was present. Culture temperature matching that of hibernation body temperature (34 °C) resulted in a delay of daily peak ATP production in comparison with active season body temperatures (37 °C). The timing of peaks of mitochondrial gene transcription was altered as were the amplitudes of transcripts coding for enzymes of the electron transport chain. Additionally, we observed changes in mean expression and timing of key metabolic genes such as SIRT1 and AMPK which are linked to the circadian system and energy balance. The amplitudes of several circadian gene transcripts were also reduced. These results reveal a link between energy conservation and a functioning circadian system in hibernation.


Assuntos
Hibernação , Ursidae , Animais , Ursidae/genética , Hibernação/genética , Ritmo Circadiano/fisiologia , Transcrição Gênica , Trifosfato de Adenosina , Estações do Ano
4.
Physiol Genomics ; 55(9): 368-380, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37486084

RESUMO

Hibernation in bears involves a suite of metabolical and physiological changes, including the onset of insulin resistance, that are driven in part by sweeping changes in gene expression in multiple tissues. Feeding bears glucose during hibernation partially restores active season physiological phenotypes, including partial resensitization to insulin, but the molecular mechanisms underlying this transition remain poorly understood. Here, we analyze tissue-level gene expression in adipose, liver, and muscle to identify genes that respond to midhibernation glucose feeding and thus potentially drive postfeeding metabolical and physiological shifts. We show that midhibernation feeding stimulates differential expression in all analyzed tissues of hibernating bears and that a subset of these genes responds specifically by shifting expression toward levels typical of the active season. Inferences of upstream regulatory molecules potentially driving these postfeeding responses implicate peroxisome proliferator-activated receptor gamma (PPARG) and other known regulators of insulin sensitivity, providing new insight into high-level regulatory mechanisms involved in shifting metabolic phenotypes between hibernation and active states.


Assuntos
Hibernação , Resistência à Insulina , Ursidae , Animais , Ursidae/genética , Ursidae/metabolismo , Hibernação/genética , Estações do Ano , Glucose/metabolismo , Resistência à Insulina/genética , Expressão Gênica
5.
BMC Genom Data ; 24(1): 33, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291509

RESUMO

OBJECTIVES: Complex physiological adaptations often involve the coordination of molecular responses across multiple tissues. Establishing transcriptomic resources for non-traditional model organisms with phenotypes of interest can provide a foundation for understanding the genomic basis of these phenotypes, and the degree to which these resemble, or contrast, those of traditional model organisms. Here, we present a one-of-a-kind gene expression dataset generated from multiple tissues of two hibernating brown bears (Ursus arctos). DATA DESCRIPTION: This dataset is comprised of 26 samples collected from 13 tissues of two hibernating brown bears. These samples were collected opportunistically and are typically not possible to attain, resulting in a highly unique and valuable gene expression dataset. In combination with previously published datasets, this new transcriptomic resource will facilitate detailed investigation of hibernation physiology in bears, and the potential to translate aspects of this biology to treat human disease.


Assuntos
Hibernação , Ursidae , Animais , Humanos , Ursidae/genética , Hibernação/genética , Adaptação Fisiológica , Estações do Ano , Expressão Gênica
6.
iScience ; 25(10): 105084, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36317158

RESUMO

Understanding how metabolic reprogramming happens in cells will aid the progress in the treatment of a variety of metabolic disorders. Brown bears undergo seasonal shifts in insulin sensitivity, including reversible insulin resistance in hibernation. We performed RNA-sequencing on brown bear adipocytes and proteomics on serum to identify changes possibly responsible for reversible insulin resistance. We observed dramatic transcriptional changes, which depended on both the cell and serum season of origin. Despite large changes in adipocyte gene expression, only changes in eight circulating proteins were identified as related to the seasonal shifts in insulin sensitivity, including some that have not previously been associated with glucose homeostasis. The identified serum proteins may be sufficient for shifting hibernation adipocytes to an active-like state.

7.
Sci Rep ; 12(1): 15251, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36085304

RESUMO

The eight species of bears world-wide consume a wide variety of diets. Some are specialists with extensive anatomical and physiological adaptations necessary to exploit specific foods or environments [e.g., polar bears (Ursus maritimus), giant pandas (Ailuropoda melanoleuca), and sloth bears (Melursus ursinus)], while the rest are generalists. Even though ursids evolved from a high-protein carnivore, we hypothesized that all have become low-protein macronutrient omnivores. While this dietary strategy has already been described for polar bears and brown bears (Ursus arctos), a recent study on giant pandas suggested their macronutrient selection was that of the ancestral high-protein carnivore. Consumption of diets with inappropriate macronutrient profiles has been associated with increased energy expenditure, ill health, failed reproduction, and premature death. Consequently, we conducted feeding and preference trials with giant pandas and sloth bears, a termite and ant-feeding specialist. Both giant pandas and sloth bears branched off from the ursid lineage a million or more years before polar bears and brown bears. We found that giant pandas are low-protein, high-carbohydrate omnivores, whereas sloth bears are low-protein, high-fat omnivores. The preference for low protein diets apparently occurred early in the evolution of ursids and may have been critical to their world-wide spread.


Assuntos
Bichos-Preguiça , Ursidae , Animais , Dieta com Restrição de Proteínas , Alimentos , Nutrientes
8.
Genome Biol Evol ; 14(10)2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36173788

RESUMO

A male mutation bias is observed across vertebrates, and, where data are available, this bias is accompanied by increased per-generation mutation rates with parental age. While continuing mitotic cell division in the male germline post puberty has been proposed as the major cellular mechanism underlying both patterns, little direct evidence for this role has been found. Understanding the evolution of the per-generation mutation rate among species requires that we identify the molecular mechanisms that change between species. Here, we study the per-generation mutation rate in an extended pedigree of the brown (grizzly) bear, Ursus arctos horribilis. Brown bears hibernate for one-third of the year, a period during which spermatogenesis slows or stops altogether. The reduction of spermatogenesis is predicted to lessen the male mutation bias and to lower the per-generation mutation rate in this species. However, using whole-genome sequencing, we find that both male bias and per-generation mutation rates are highly similar to that expected for a non-hibernating species. We also carry out a phylogenetic comparison of substitution rates along the lineage leading to brown bear and panda (a non-hibernating species) and find no slowing of the substitution rate in the hibernator. Our results contribute to accumulating evidence that suggests that male germline cell division is not the major determinant of mutation rates and mutation biases. The results also provide a quantitative basis for improved estimates of the timing of carnivore evolution.


Assuntos
Hibernação , Ursidae , Animais , Masculino , Ursidae/genética , Hibernação/genética , Taxa de Mutação , Filogenia , Mutação em Linhagem Germinativa , Células Germinativas
9.
Genome Biol Evol ; 14(9)2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35929770

RESUMO

The brown bear (Ursus arctos) is the second largest and most widespread extant terrestrial carnivore on Earth and has recently emerged as a medical model for human metabolic diseases. Here, we report a fully phased chromosome-level assembly of a male North American brown bear built by combining Pacific Biosciences (PacBio) HiFi data and publicly available Hi-C data. The final genome size is 2.47 Gigabases (Gb) with a scaffold and contig N50 length of 70.08 and 43.94 Megabases (Mb), respectively. Benchmarking Universal Single-Copy Ortholog (BUSCO) analysis revealed that 94.5% of single copy orthologs from Mammalia were present in the genome (the highest of any ursid genome to date). Repetitive elements accounted for 44.48% of the genome and a total of 20,480 protein coding genes were identified. Based on whole genome alignment to the polar bear, the brown bear is highly syntenic with the polar bear, and our phylogenetic analysis of 7,246 single-copy orthologs supports the currently proposed species tree for Ursidae. This highly contiguous genome assembly will support future research on both the evolutionary history of the bear family and the physiological mechanisms behind hibernation, the latter of which has broad medical implications.


Assuntos
Ursidae , Animais , Cromossomos , Genoma , Haplótipos , Humanos , Filogenia , Ursidae/genética
10.
Integr Comp Biol ; 62(6): 1802-1811, 2022 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-35709393

RESUMO

Hibernation in brown bears is an annual process involving multiple physiologically distinct seasons-hibernation, active, and hyperphagia. While recent studies have characterized broad patterns of differential gene regulation and isoform usage between hibernation and active seasons, patterns of gene and isoform expression during hyperphagia remain relatively poorly understood. The hyperphagia stage occurs between active and hibernation seasons and involves the accumulation of large fat reserves in preparation for hibernation. Here, we use time-series analyses of gene expression and isoform usage to interrogate transcriptomic regulation associated with all three seasons. We identify a large number of genes with significant differential isoform usage (DIU) across seasons and show that these patterns of isoform usage are largely tissue-specific. We also show that DIU and differential gene-level expression responses are generally non-overlapping, with only a small subset of multi-isoform genes showing evidence of both gene-level expression changes and changes in isoform usage across seasons. Additionally, we investigate nuanced regulation of candidate genes involved in the insulin signaling pathway and find evidence of hyperphagia-specific gene expression and isoform regulation that may enhance fat accumulation during hyperphagia. Our findings highlight the value of using temporal analyses of both gene- and isoform-level gene expression when interrogating complex physiological phenotypes and provide new insight into the mechanisms underlying seasonal changes in bear physiology.


Assuntos
Hibernação , Ursidae , Animais , Ursidae/genética , Ursidae/metabolismo , Hibernação/genética , Hiperfagia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transcriptoma , Estações do Ano
11.
G3 (Bethesda) ; 12(3)2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35100340

RESUMO

Understanding hibernation in brown bears (Ursus arctos) can provide insight into some human diseases. During hibernation, brown bears experience periods of insulin resistance, physical inactivity, extreme bradycardia, obesity, and the absence of urine production. These states closely mimic aspects of human diseases such as type 2 diabetes, muscle atrophy, as well as renal and heart failure. The reversibility of these states from hibernation to active season enables the identification of mediators with possible therapeutic value for humans. Recent studies have identified genes and pathways that are differentially expressed between active and hibernation seasons in bears. However, little is known about the role of differential expression of gene isoforms on hibernation physiology. To identify both distinct and novel mRNA isoforms, full-length RNA-sequencing (Iso-Seq) was performed on adipose, skeletal muscle, and liver from three individual bears sampled during both active and hibernation seasons. The existing reference genome annotation was improved by combining it with the Iso-Seq data. Short-read RNA-sequencing data from six individuals were mapped to the new reference annotation to quantify differential isoform usage (DIU) between tissues and seasons. We identified differentially expressed isoforms in all three tissues, to varying degrees. Adipose had a high level of DIU with isoform switching, regardless of whether the genes were differentially expressed. Our analyses revealed that DIU, even in the absence of differential gene expression, is an important mechanism for modulating genes during hibernation. These findings demonstrate the value of isoform expression studies and will serve as the basis for deeper exploration into hibernation biology.


Assuntos
Diabetes Mellitus Tipo 2 , Regulação da Expressão Gênica , Hibernação , Ursidae , Tecido Adiposo/metabolismo , Animais , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Hibernação/genética , Humanos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ursidae/genética , Ursidae/metabolismo
12.
J Comp Physiol B ; 192(2): 397-410, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35024905

RESUMO

Obesity is among the most prevalent of health conditions in humans leading to a multitude of metabolic pathologies such as type 2 diabetes and hyperglycemia. However, there are many wild animals that have large seasonal cycles of fat accumulation and loss that do not result in the health consequences observed in obese humans. One example is the grizzly bear (Ursus arctos horribilis) that can have body fat content > 40% that is then used as the energy source for hibernation. Previous in vitro studies found that hibernation season adipocytes exhibit insulin resistance and increased lipolysis. Yet, other aspects of cellular metabolism were not addressed, leaving this in vitro model incomplete. Thus, the current studies were performed to determine if the cellular energetic phenotype-measured via metabolic flux-of hibernating bears was retained in cultured adipocytes and to what extent that was due to serum or intrinsic cellular factors. Extracellular acidification rate and oxygen consumption rate were used to calculate proton efflux rate and total ATP defined as both ATP from glycolysis and from mitochondrial respiration. Hibernation adipocytes treated with hibernation serum produced less ATP and exhibited lower maximal respiration and glycolysis rates than active season adipocytes. These effects were reversed with serum from the opposite season. Insulin had little influence on total ATP production and lipolysis in both hibernation and active serum-treated adipocytes. Together, these results suggest that the metabolic suppression occurring in hibernation adipocytes are downstream of insulin signaling and likely due to a combined reduction in mitochondria number and/or function and glycolytic processes. Future elucidation of the serum components and the cellular mechanisms that enable alterations in mitochondrial function could provide a novel avenue for the development of treatments for human metabolic diseases.


Assuntos
Diabetes Mellitus Tipo 2 , Hibernação , Ursidae , Trifosfato de Adenosina/metabolismo , Adipócitos , Animais , Hibernação/fisiologia , Insulina/metabolismo , Estações do Ano , Ursidae/fisiologia
13.
Zoo Biol ; 41(2): 166-175, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34793606

RESUMO

Although polar bears (Ursus maritimus) and brown bears (U. arctos) have been exhibited in zoological gardens for centuries, little is known about their nutritional needs. Multiple recent studies on both wild and captive polar bears and brown bears have found that they voluntarily select dietary macronutrient proportions resulting in much lower dietary protein and higher fat or digestible carbohydrate concentrations than are currently fed in most zoos. These lower protein concentrations selected by both species maximized growth rates and efficiencies of energy utilization in brown bears and may play a role in reducing kidney, liver, and cardiovascular diseases in both species. Therefore, we propose the need for the development of new dietary regimens for both species in managed care that better reflect their macronutrient needs. We developed a new kibble that is higher in fat and lower in protein than typical diets that have been fed in managed care, has a fatty acid profile more consistent with wild bear diets, and has been readily consumed by both brown bears and polar bears. The kibble can be fed as the sole diet or as part of more complex diets with additional fruits, meats, or vegetables. Because many nutritional deficiencies and related diseases can take months or years to appear, we urge caution and continued long-term monitoring of bears and their diets to ensure their optimal health.


Assuntos
Ursidae , Animais , Animais Selvagens , Animais de Zoológico , Dieta/veterinária
14.
J Comp Physiol B ; 192(2): 379-395, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34687352

RESUMO

Accurate information on diet composition is central to understanding and conserving carnivore populations. Quantitative fatty acid signature analysis (QFASA) has emerged as a powerful tool for estimating the diets of predators, but ambiguities remain about the timeframe of QFASA estimates and the need to account for species-specific patterns of metabolism. We conducted a series of feeding experiments with four juvenile male brown bears (Ursus arctos) to (1) track the timing of changes in adipose tissue composition and QFASA diet estimates in response to a change in diet and (2) quantify the relationship between consumer and diet FA composition (i.e., determine "calibration coefficients"). Bears were fed three compositionally distinct diets for 90-120 days each. Two marine-based diets were intended to approximate the lipid content and composition of the wild diet of polar bears (U. maritimus). Bear adipose tissue composition changed quickly in the direction of the diet and showed evidence of stabilization after 60 days. During hibernation, FA profiles were initially stable but diet estimates after 10 weeks were sensitive to calibration coefficients. Calibration coefficients derived from the marine-based diets were broadly similar to each other and to published values from marine-fed mink (Mustela vison), which have been used as a model for free-ranging polar bears. For growing bears on a high-fat diet, the temporal window for QFASA estimates was 30-90 days. Although our results reinforce the importance of accurate calibration, the similarities across taxa and diets suggest it may be feasible to develop a generalized QFASA approach for mammalian carnivores.


Assuntos
Hibernação , Ursidae , Animais , Calibragem , Dieta/veterinária , Jejum , Ácidos Graxos/metabolismo , Masculino , Ursidae/fisiologia
15.
Sci Rep ; 11(1): 15309, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34321600

RESUMO

Studies of predator feeding ecology commonly focus on energy intake. However, captive predators have been documented to selectively feed to optimize macronutrient intake. As many apex predators experience environmental changes that affect prey availability, limitations on selective feeding can affect energetics and health. We estimated the protein:fat ratio of diets consumed by wild polar bears using a novel isotope-based approach, measured protein:fat ratios selected by zoo polar bears offered dietary choice and examined potential energetic and health consequences of overconsuming protein. Dietary protein levels selected by wild and zoo polar bears were low and similar to selection observed in omnivorous brown bears, which reduced energy intake requirements by 70% compared with lean meat diets. Higher-protein diets fed to zoo polar bears during normal care were concurrent with high rates of mortality from kidney disease and liver cancer. Our results suggest that polar bears have low protein requirements and that limitations on selective consumption of marine mammal blubber consequent to climate change could meaningfully increase their energetic costs. Although bear protein requirements appear lower than those of other carnivores, the energetic and health consequences of protein overconsumption identified in this study have the potential to affect a wide range of taxa.


Assuntos
Proteínas na Dieta/farmacologia , Hiperfagia/fisiopatologia , Comportamento Predatório/fisiologia , Ursidae/fisiologia , Tecido Adiposo , Ração Animal , Animais , Animais Selvagens , Animais de Zoológico , Isótopos de Carbono/análise , Causas de Morte , Mudança Climática , Gorduras na Dieta/farmacologia , Metabolismo Energético , Feminino , Preferências Alimentares , Cabelo/química , Cardiopatias/mortalidade , Cardiopatias/veterinária , Nefropatias/sangue , Nefropatias/mortalidade , Nefropatias/veterinária , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/veterinária , Masculino , Músculos , Isótopos de Nitrogênio/análise , Salmão , Focas Verdadeiras , Baleias
16.
J Exp Biol ; 224(12)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34137891

RESUMO

Hibernation is characterized by depression of many physiological processes. To determine if this state is reversible in a non-food caching species, we fed hibernating grizzly bears (Ursus arctos horribilis) dextrose for 10 days to replace 53% or 100% of the estimated minimum daily energetic cost of hibernation. Feeding caused serum concentrations of glycerol and ketones (ß-hydroxybutyrate) to return to active season levels irrespective of the amount of glucose fed. By contrast, free fatty acids (FFAs) and indices of metabolic rate, such as general activity, heart rate, strength of heart rate circadian rhythm, and insulin sensitivity were restored to approximately 50% of active season levels. Body temperature was unaffected by feeding. To determine the contribution of adipose to the metabolic effects observed after glucose feeding, we cultured bear adipocytes collected at the beginning and end of the feeding and performed metabolic flux analysis. We found a ∼33% increase in energy metabolism after feeding. Moreover, basal metabolism before feeding was 40% lower in hibernation cells compared with fed cells or active cells cultured at 37°C, thereby confirming the temperature independence of metabolic rate. The partial depression of circulating FFAs with feeding likely explains the incomplete restoration of insulin sensitivity and other metabolic parameters in hibernating bears. Further depression of metabolic function is likely to be an active process. Together, the results provide a highly controlled model to examine the relationship between nutrient availability and metabolism on the hibernation phenotype in bears.


Assuntos
Hibernação , Ursidae , Tecido Adiposo , Animais , Fenótipo , Estações do Ano
17.
Vet Med Sci ; 7(5): 2032-2038, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33978314

RESUMO

Hair cortisol concentration (HCC) is being used increasingly to evaluate long-term stress in many mammalian species. Most of the cortisol is assumed to passively diffuse from circulating blood into hair follicles and gradually accumulate in growing hair. However, our research with free-ranging grizzly bears (Ursus arctos) suggests HCC increases significantly within several hours following capture, a time too brief to be explained by this mechanism alone. In this study with captive grizzly bears, we sought to determine if a brief spike in blood cortisol concentration, thus mimicking a single stressful event, would cause an increase in HCC over a 7-day period. To do this, we administered a single intravenous dose (5 µg/kg) of cosyntropin to three captive unanaesthetised adult female grizzly bears on two occasions, during April when hair growth was arrested and during August when hair was growing. In both trials, the cosyntropin caused a two-fold or greater increase in serum cortisol levels within 1 hr but did not appear to influence HCC at 1, 48, and 168 hr following cosyntropin administration. We conclude the cosyntropin-induced cortisol spike was likely insignificant when compared to the adrenocortical response that occurs in free-ranging bears when captured. We suggest further study with a larger sample of captive bears to evaluate the combined effects of anaesthesia and multiple doses of cosyntropin administered over several hours would better simulate the adrenocortical response of free-ranging grizzly bears during capture.


Assuntos
Ursidae , Animais , Cosintropina , Feminino , Cabelo , Hidrocortisona , Ursidae/fisiologia
18.
J Exp Biol ; 224(Pt 6)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785520

RESUMO

Animal movements are major determinants of energy expenditure and ultimately the cost-benefit of landscape use. Thus, we sought to understand those costs and how grizzly bears (Ursus arctos) move in mountainous landscapes. We trained captive grizzly bears to walk on a horizontal treadmill and up and down 10% and 20% slopes. The cost of moving upslope increased linearly with speed and slope angle, and this was more costly than moving horizontally. The cost of downslope travel at slower speeds was greater than the cost of traveling horizontally but appeared to decrease at higher speeds. The most efficient walking speed that minimized cost per unit distance was 1.19±0.11 m s-1 However, grizzly bears fitted with GPS collars in the Greater Yellowstone Ecosystem moved at an average velocity of 0.61±0.28 m s-1 and preferred to travel on near-horizontal slopes at twice their occurrence. When traveling uphill or downhill, grizzly bears chose paths across all slopes that were ∼54% less steep and costly than the maximum available slope. The net costs (J kg-1 m-1) of moving horizontally and uphill were the same for grizzly bears, humans and digitigrade carnivores, but those costs were 46% higher than movement costs for ungulates. These movement costs and characteristics of landscape use determined using captive and wild grizzly bears were used to understand the strategies that grizzly bears use for preying on large ungulates and the similarities in travel between people and grizzly bears that might affect the risk of encountering each other on shared landscapes.


Assuntos
Ursidae , Animais , Ecossistema , Metabolismo Energético , Humanos , Movimento , Caminhada
19.
Commun Biol ; 3(1): 243, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32404883

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

20.
J Biol Rhythms ; 35(2): 180-194, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31975640

RESUMO

Life in the Arctic presents organisms with multiple challenges, including extreme photic conditions, cold temperatures, and annual loss and daily movement of sea ice. Polar bears (Ursus maritimus) evolved under these unique conditions, where they rely on ice to hunt their main prey, seals. However, very little is known about the dynamics of their daily and seasonal activity patterns. For many organisms, activity is synchronized (entrained) to the earth's day/night cycle, in part via an endogenous (circadian) timekeeping mechanism. The present study used collar-mounted accelerometer and global positioning system data from 122 female polar bears in the Chukchi and Southern Beaufort Seas collected over an 8-year period to characterize activity patterns over the calendar year and to determine if circadian rhythms are expressed under the constant conditions found in the Arctic. We reveal that the majority of polar bears (80%) exhibited rhythmic activity for the duration of their recordings. Collectively within the rhythmic bear cohort, circadian rhythms were detected during periods of constant daylight (June-August; 24.40 ± 1.39 h, mean ± SD) and constant darkness (23.89 ± 1.72 h). Exclusive of denning periods (November-April), the time of peak activity remained relatively stable (acrophases: ~1200-1400 h) for most of the year, suggesting either entrainment or masking. However, activity patterns shifted during the spring feeding and seal pupping season, as evidenced by an acrophase inversion to ~2400 h in April, followed by highly variable timing of activity across bears in May. Intriguingly, despite the dynamic environmental photoperiodic conditions, unpredictable daily timing of prey availability, and high between-animal variability, the average duration of activity (alpha) remained stable (11.2 ± 2.9 h) for most of the year. Together, these results reveal a high degree of behavioral plasticity in polar bears while also retaining circadian rhythmicity. Whether this degree of plasticity will benefit polar bears faced with a loss of sea ice remains to be determined.


Assuntos
Comportamento Animal , Relógios Circadianos , Ritmo Circadiano , Fotoperíodo , Ursidae/fisiologia , Animais , Regiões Árticas , Ecossistema , Feminino , Sistemas de Informação Geográfica , Reprodução , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...